• Furness J.B., Kunze W.A., Clerc N. Nutrient tasting and signaling mechanisms in the gut. II. The intestine as a sensory organ: Neural, endocrine, and immune responses. Am. J. Physiol. 1999;
• Bischoff S. C., Barbara G., Buurman W., et al. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterology. 2014;
• Roda G., Sartini A., Zambon E., et al. Intestinal epithelial cells in inflammatory bowel diseases. World Journal of Gastroenterology. 2010;
• Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell. Mol. Life Sci. 2013;
• Margaritis V.G., Filos K.S., Michalaki M.A., Scopa C.D., Spiliopoulou I., Nikolopoulou V.N., Vagianos C.E. Effect of Oral Glutamine Administration on Bacterial Tanslocation, Endotoxemia, Liver and Ileal Morphology, and Apoptosis in Rats with Obstructive Jaundice. World J. Surg. 2005;
• Dos Santos R.G.C., Viana M.L., Generoso S.V., Arantes R.E., Davisson Correia M.I.T., Cardoso V.N. Glutamine Supplementation Decreases Intestinal Permeability and Preserves Gut Mucosa Integrity in an Experimental Mouse Model. J. Parenter. Enter. Nutr. 2010;
• An Liu, Zhihua Gong, Ling Lin, Wei Xu, Tuo Zhang, Sheng Zhang, Yinhua Li, Jinhua Che, Wenjun Xiao. Effects of l-theanine on glutamine metabolism in enterotoxigenic Escherichia coli (E44813)-stressed and non-stressed rats. Giornale degli alimenti funzionali, Volume 64, gennaio 2020
• Coster J., McCauley R., Hall J.. 2004. Glutamine: metabolism and application in nutrition support. Asia Pac. J. Clin. Nutr.
• Shmagel A., Demmer R., Knights D., Butler M., Langsetmo L., Lane N.E., Ensrud K. The Effects of Glucosamine and Chondroitin Sulfate on Gut Microbial Composition: A Systematic Review of Evidence from Animal and Human Studies. Nutrients. 2019;
• Bak YK, et al. Effects of dietary supplementation of glucosamine sulfate on intestinal inflammation in a mouse model of experimental colitis. J Gastroenterol Hepatol. 2014 May;
• Garrido D, et al. Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. Anaerobe. 2012 Aug;
• Corfield A.P., Myerscough N., Bradfield N., Corfield C.D.A., Gough M., Clamp J.R., Durdey P., Warren B.F., Bartolo D.C.C., et al. Colonic mucins in ulcerative colitis: Evidence for loss of sulfation. Glycoconj. J. 1996;
• Ibrahim A., Gilzad-kohan M.H., Aghazadeh-Habashi A., Jamali F. Absorption and bioavailability of glucosamine in the rat. J. Pharm. Sci. 2012;
• Dey N., Bhattacharjee S. Accumulation of Polyphenolic Compounds and Osmolytes under Dehydration Stress and Their Implication in Redox Regulation in Four Indigenous Aromatic Rice Cultivars. Rice Sci. 2020;
• Jeppesen P.B., Gabe S.M., Seidner D.L., Lee H.M., Olivier C. Citrulline correlations in short bowel syndrome-intestinal failure by patient stratification: Analysis of 24 weeks of teduglutide treatment from a randomized controlled study. Clin. Nutr. 2020;
• Liu Y., Tian X., Gou L., Fu X., Li S., Lan N., Yin X. Protective effect of l-citrulline against ethanol-induced gastric ulcer in rats. Environ. Toxicol. Pharmacol. 2012;
• Curis E., Crenn P., Cynober L. Citrulline and the gut. Curr. Opin. Clin. Nutr. Metab. Care. 2007;
• Shen L.J., Guan Y.Y., Wu X.P., Wang Q., Wang L., Xiao T., Wu H.R., Wang J.G. Serum citrulline as a diagnostic marker of sepsis-induced intestinal dysfunction. Clin. Res. Hepatol. Gastroenterol. 2015;
• Kaore S.N., Kaore N.M. Citrulline: Pharmacological Perspectives and Role as a Biomarker in Diseases and Toxicities. In: Gupta R., editor. Biomarkers in Toxicology. Academic Press; Cambridge, MA, USA: 2014.
• Crenn P., Messing B., Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin. Nutr. 2008;
• Finkelstein JD. Methionine Metabolism in Mammals. J Nutr Biochem. 1990;
• Song Z., Uriarte S., Sahoo R., Chen T., Barve S., Hill D., McClain C. S-adenosylmethionine (SAMe) modulates interleukin-10 and interleukin-6, but not TNF, production via the adenosine (A2) receptor. Biochim. Biophys. Acta - Mol. Cell Res. 2005;
• Marchesini G, Bianchi G, Merli M, Amodio P, Panella C, Loguercio C, et al. Nutritional supplementation with branched‐chain amino acids in advanced cirrhosis: a double‐blind, randomized trial. Gastroenterology 2003;
• Soares A. D., Costa K. A., Wanner S. P., Santos R. G., Fernandes S. O., Martins F. S., Nicoli J. R., Coimbra C. C., Cardoso V. N.. 2014. Dietary glutamine prevents the loss of intestinal barrier function and attenuates the increase in core body temperature induced by acute heat exposure. Br. J. Nutr. 112:1601–1610.
• Coster J., McCauley R., Hall J.. 2004. Glutamine: metabolism and application in nutrition support. Asia Pac. J. Clin. Nutr. 13:25–31.
• Vors C., Pineau G., Drai J., Meugnier E., Pesenti S., Laville M., Laugerette F., Malpuech-Brugere C., Vidal H., Michalski M.C. Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose-effect trial. J. Clin. Endocrinol. Metab. 2015;
• Laugerette F., Alligier M., Bastard J.P., Drai J., Chanseaume E., Lambert-Porcheron S., Laville M., Morio B., Vidal H., Michalski M.C. Overfeeding increases postprandial endotoxemia in men: inflammatory outcome may depend on LPS transporters LBP and sCD14. Mol. Nutr. Food Res. 2014;
• Subramanian V.S., Sabui S., Moradi H., Marchant J.S., Said H.M. Inhibition of intestinal ascorbic acid uptake by lipopolysaccharide is mediated via transcriptional mechanisms. Biochim. Biophys. Acta. 2018;
• Tsukaguchi H., Tokui T., Mackenzie B., Berger U.V., Chen X.Z., Wang Y., Brubaker R.F., Hediger M.A. A family of mammalian Na+-dependent l-ascorbic acid transporters. Nature. 1999;
• Buffinton G.D., Doe W.F. Depleted mucosal antioxidant defences in inflammatory bowel disease. Free Radic. Biol. Med. 1995.